4. System of linear equations#

Vectors and matrices play an important role in describing and solving systems of linear equations. Let a linear system of \(m\) equations in \(n\) unknown parameters \(x_{i}\), \(i=1, \ldots, n\), be given as

\[\begin{split} \begin{array}{ccc} y_{1} & = & a_{11}x_{1}+a_{12}x_{2}+\ldots + a_{1n}x_{n} \\ y_{2} & = & a_{21}x_{1}+a_{22}x_{2}+\ldots + a_{2n}x_{n} \\ \vdots & & \vdots \\ y_{m} & = & a_{m1}x_{1}+a_{m2}x_{2}+\ldots + a_{mn}x_{n} \end{array} \end{split}\]

This system of linear equations can be written in a matrix form as:

\[\begin{split} \begin{bmatrix} y_1\\ y_2 \\ \vdots \\ y_m \end{bmatrix}= \begin{bmatrix} a_{11}&a_{12}&\dots&a_{1n}\\a_{21}&a_{22}&\dots&a_{2n} \\ \vdots&\vdots&\vdots&\vdots \\ a_{m1}&a_{m2}&\dots&a_{mn} \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \\ \vdots \\ x_n \end{bmatrix} \end{split}\]

By introducing

\[\begin{split} \mathrm{y}=\begin{bmatrix} y_1\\ y_2 \\ \vdots \\ y_m \end{bmatrix}, ~ \mathrm{A}=\begin{bmatrix} a_{11}&a_{12}&\dots&a_{1n}\\a_{21}&a_{22}&\dots&a_{2n} \\ \vdots&\vdots&\vdots&\vdots \\ a_{m1}&a_{m2}&\dots&a_{mn} \end{bmatrix}, ~ \mathrm{x}=\begin{bmatrix} x_1\\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \end{split}\]

the linear system can be written in the compact matrix form \(\mathrm{y} = \mathrm{A} \mathrm{x}\).

Note that the right-hand side of the system \(\mathrm{y} = \mathrm{A} \mathrm{x}\) can be re-written as the linear combinations of the column vectors of \(\mathrm{A}\):

\[\begin{split} \mathrm{A}\mathrm{x}=\begin{bmatrix} a_{11}\\a_{21}\\ \vdots \\ a_{m1} \end{bmatrix}x_1+\begin{bmatrix} a_{12}\\a_{22}\\ \vdots \\ a_{m2} \end{bmatrix}x_2 + \dots +\begin{bmatrix} a_{1n}\\a_{2n}\\ \vdots \\ a_{mn} \end{bmatrix}x_n. \end{split}\]

The linear system of equations is solved, once it is known which linear combination(s) of the columns of \(\mathrm{A}\) produces \(\mathrm{y}\).

Example: Assume the following system of three equations with two unknowns:

\[\begin{split} 1 =x_1-x_2\\ -1=x_1-3x_2\\ 3 =x_1+x_2 \end{split}\]

These three equations can be written in a matrix form as

\[\begin{split} \begin{bmatrix} 1\\-1\\3 \end{bmatrix} = \begin{bmatrix} 1&-1\\1&-3\\1&1 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix} \end{split}\]

The solution of this system is \(x_1=2\) and \(x_2=1\). We can see that the particular linear combination of columns of \(\mathrm{A}\) using \(x_1=2\) and \(x_2=1\) produces the vector \(\begin{bmatrix} 1\\-1\\3 \end{bmatrix}\) :

\[\begin{split} \begin{bmatrix} 1\\1\\1 \end{bmatrix}2 + \begin{bmatrix} -1\\-3\\1 \end{bmatrix}1=\begin{bmatrix} 1\\-1\\3 \end{bmatrix}. \end{split}\]

4.1. Properties of linear systems of equations#

Consider a linear system of \(m\) equations in \(n\) unknowns:

\[\begin{split} \begin{bmatrix} y_1\\ y_2 \\ \vdots \\ y_m \end{bmatrix}= \begin{bmatrix} a_{11}&a_{12}&\dots&a_{1n}\\a_{21}&a_{22}&\dots&a_{2n} \\ \vdots&\vdots&\vdots&\vdots \\ a_{m1}&a_{m2}&\dots&a_{mn} \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \\ \vdots \\ x_n \end{bmatrix}\end{split}\]

In compact form this is written as \(\mathrm{y} = \mathrm{A}\mathrm{x}\).

Such a system may or may not have a solution, and if a solution exists, this solution may or may not be unique.

4.2. Consistent systems: at least one solution exists#

If a solution exists, the system of equations is called consistent. A solution exists if and only if \(y\) can be written as a linear combination of the column vectors of matrix \(\mathrm{A}\):

\[\begin{split}\mathrm{y}=\begin{bmatrix} a_{11}\\a_{21}\\ \vdots \\ a_{m1} \end{bmatrix}x_1+\begin{bmatrix} a_{12}\\a_{22}\\ \vdots \\ a_{m2} \end{bmatrix}x_2 + \dots +\begin{bmatrix} a_{1n}\\a_{2n}\\ \vdots \\ a_{mn} \end{bmatrix}x_n\end{split}\]

In that case \(\mathrm{y}\) is an element of the range space of \(\mathrm{A}\): \(\mathrm{y} \in \mathcal{R}(\mathrm{A})\).

For a consistent system of equations it is always possible to find a solution \(x\) such that \(\mathrm{y}=\mathrm{A}\mathrm{x}\). If it is not possible to find a solution, the system is called inconsistent.

Consistency is guaranteed if \(\text{rank}(\mathrm{A}) = m\)#

Explanation: \( \mathrm{y} \in \mathbb{R}^{m}\) and the system is consistent if \( \mathrm{y} \in \mathcal{R}(\mathrm{A}) \), hence consistency is guaranteed if \(\mathcal{R}(\mathrm{A})=\mathbb{R}^{m}\). This means that the columns of \(\mathrm{A}\) must span the complete space of reals \(\mathbb{R}^{m}\), which is true if \(\text{rank}(\mathrm{A}) = m\).

If \(\text{rank}(\mathrm{A}) < m\), the system may or may not be consistent, this depends then on the actual entries of the vector \(\mathrm{y}\).

4.3. Unique solution#

A consistent system has a unique solution if and only if the column vectors of matrix \(\mathrm{A}\) are independent, i.e. if \( \text{rank}(\mathrm{A}) = n\).

This can be seen as follows: assume that \(\mathrm{x}\) and \(\mathrm{x}' \neq \mathrm{x}\) are two different solutions. Then \(\mathrm{A}\mathrm{x}=\mathrm{A}\mathrm{x}’\) or \(\mathrm{A}(\mathrm{x}-\mathrm{x}')=0\). But this can only be the case if some of the column vectors of \(\mathrm{A}\) are linear dependent, which contradicts the assumption of full column rank.

4.4. Determined, overdetermined and underdetermined systems#

A system of equations \(\mathrm{y}=\mathrm{A}\mathrm{x}\) with \(\text{rank}(\mathrm{A}) =m=n\) is consistent and has a unique solution: \(\hat{\mathrm{x}} = \mathrm{A}^{-1}\mathrm{y}\). Such a system is called determined.

A system is underdetermined if \(\text{rank}(\mathrm{A}) < n\), i.e. if it does not have a unique solution.

A system is overdetermined if \(\text{rank}(\mathrm{A}) < m\), i.e. the system may or may not be consistent.

4.5. Redundancy#

The redundancy of a system of equations is equal to \(m - \text{rank}(\mathrm{A})\).

If we restrict ourselves to systems of observation equations that are of full column rank: \(\text{rank}(\mathrm{A}) = n \), the system can either be

Determined systems: \(\text{rank}(\mathrm{A}) =n =m\), the redundancy is equal to 0

Overdetermined systems: \(\text{rank}(\mathrm{A}) =n < m\), the redundancy is equal to \(m-n>0\)