Table: Central Chi-Squared Distribution

Contents

10.2. Table: Central Chi-Squared Distribution#

The table shows one-sided (right-hand) probabilities \(\alpha\) as function of the critical value \(k_\alpha\) and the degrees of freedom, \(q\), i.e. \(\alpha = P(X\geq k_\alpha)\) for \(\chi^2(q,0)\).

To evaluate the table for \(k_\alpha\): find the value of \(q\) in the first column, then the column for \(\alpha\) in the first row.

Example: \(\alpha\) = 0.0100 and \(q\) = 10 yield \(k_\alpha\) = 23.2093.

from scipy.stats import chi2

The cell below is set up to use interactively. To use it, click –> Live Code on the top right corner of this screen and then wait until Python interaction is ready. The method scipy.stats.chi2 has already been imported as chi2.

alpha = 0.0100
q = 10

k_alpha = chi2.ppf(1 - alpha, q)

print(f"For alpha = {alpha:.4f} and q = {q} degrees of freedom, k_alpha = {k_alpha:0.4f}, ")
print(f"The probability in the upper (right-hand) tail is {100*alpha:.1f}%.")
For alpha = 0.0100 and q = 10 degrees of freedom, k_alpha = 23.2093, 
The probability in the upper (right-hand) tail is 1.0%.

Table of Values#

Table 10.2 Central Chi-Squared Distribution#

\(\alpha\)

0.9990

0.9950

0.9900

0.9750

0.9500

0.9000

0.1000

0.0500

0.0250

0.0100

0.0050

0.0010

\(q\)

1

0.0000

0.0000

0.0002

0.0010

0.0039

0.0158

2.7055

3.8415

5.0239

6.6349

7.8794

10.8276

2

0.0020

0.0100

0.0201

0.0506

0.1026

0.2107

4.6052

5.9915

7.3778

9.2103

10.5966

13.8155

3

0.0243

0.0717

0.1148

0.2158

0.3518

0.5844

6.2514

7.8147

9.3484

11.3449

12.8382

16.2662

4

0.0908

0.2070

0.2971

0.4844

0.7107

1.0636

7.7794

9.4877

11.1433

13.2767

14.8603

18.4668

5

0.2102

0.4117

0.5543

0.8312

1.1455

1.6103

9.2364

11.0705

12.8325

15.0863

16.7496

20.5150

6

0.3811

0.6757

0.8721

1.2373

1.6354

2.2041

10.6446

12.5916

14.4494

16.8119

18.5476

22.4577

7

0.5985

0.9893

1.2390

1.6899

2.1673

2.8331

12.0170

14.0671

16.0128

18.4753

20.2777

24.3219

8

0.8571

1.3444

1.6465

2.1797

2.7326

3.4895

13.3616

15.5073

17.5345

20.0902

21.9550

26.1245

9

1.1519

1.7349

2.0879

2.7004

3.3251

4.1682

14.6837

16.9190

19.0228

21.6660

23.5894

27.8772

10

1.4787

2.1559

2.5582

3.2470

3.9403

4.8652

15.9872

18.3070

20.4832

23.2093

25.1882

29.5883

11

1.8339

2.6032

3.0535

3.8157

4.5748

5.5778

17.2750

19.6751

21.9200

24.7250

26.7568

31.2641

12

2.2142

3.0738

3.5706

4.4038

5.2260

6.3038

18.5493

21.0261

23.3367

26.2170

28.2995

32.9095

13

2.6172

3.5650

4.1069

5.0088

5.8919

7.0415

19.8119

22.3620

24.7356

27.6882

29.8195

34.5282

14

3.0407

4.0747

4.6604

5.6287

6.5706

7.7895

21.0641

23.6848

26.1189

29.1412

31.3193

36.1233

15

3.4827

4.6009

5.2293

6.2621

7.2609

8.5468

22.3071

24.9958

27.4884

30.5779

32.8013

37.6973

16

3.9416

5.1422

5.8122

6.9077

7.9616

9.3122

23.5418

26.2962

28.8454

31.9999

34.2672

39.2524

17

4.4161

5.6972

6.4078

7.5642

8.6718

10.0852

24.7690

27.5871

30.1910

33.4087

35.7185

40.7902

18

4.9048

6.2648

7.0149

8.2307

9.3905

10.8649

25.9894

28.8693

31.5264

34.8053

37.1565

42.3124

19

5.4068

6.8440

7.6327

8.9065

10.1170

11.6509

27.2036

30.1435

32.8523

36.1909

38.5823

43.8202

20

5.9210

7.4338

8.2604

9.5908

10.8508

12.4426

28.4120

31.4104

34.1696

37.5662

39.9968

45.3147

21

6.4467

8.0337

8.8972

10.2829

11.5913

13.2396

29.6151

32.6706

35.4789

38.9322

41.4011

46.7970

22

6.9830

8.6427

9.5425

10.9823

12.3380

14.0415

30.8133

33.9244

36.7807

40.2894

42.7957

48.2679

23

7.5292

9.2604

10.1957

11.6886

13.0905

14.8480

32.0069

35.1725

38.0756

41.6384

44.1813

49.7282

24

8.0849

9.8862

10.8564

12.4012

13.8484

15.6587

33.1962

36.4150

39.3641

42.9798

45.5585

51.1786

25

8.6493

10.5197

11.5240

13.1197

14.6114

16.4734

34.3816

37.6525

40.6465

44.3141

46.9279

52.6197

26

9.2221

11.1602

12.1981

13.8439

15.3792

17.2919

35.5632

38.8851

41.9232

45.6417

48.2899

54.0520

27

9.8028

11.8076

12.8785

14.5734

16.1514

18.1139

36.7412

40.1133

43.1945

46.9629

49.6449

55.4760

28

10.3909

12.4613

13.5647

15.3079

16.9279

18.9392

37.9159

41.3371

44.4608

48.2782

50.9934

56.8923

29

10.9861

13.1211

14.2565

16.0471

17.7084

19.7677

39.0875

42.5570

45.7223

49.5879

52.3356

58.3012

30

11.5880

13.7867

14.9535

16.7908

18.4927

20.5992

40.2560

43.7730

46.9792

50.8922

53.6720

59.7031

40

17.9164

20.7065

22.1643

24.4330

26.5093

29.0505

51.8051

55.7585

59.3417

63.6907

66.7660

73.4020

50

24.6739

27.9907

29.7067

32.3574

34.7643

37.6886

63.1671

67.5048

71.4202

76.1539

79.4900

86.6608

60

31.7383

35.5345

37.4849

40.4817

43.1880

46.4589

74.3970

79.0819

83.2977

88.3794

91.9517

99.6072

70

39.0364

43.2752

45.4417

48.7576

51.7393

55.3289

85.5270

90.5312

95.0232

100.4252

104.2149

112.3169

80

46.5199

51.1719

53.5401

57.1532

60.3915

64.2778

96.5782

101.8795

106.6286

112.3288

116.3211

124.8392

90

54.1552

59.1963

61.7541

65.6466

69.1260

73.2911

107.5650

113.1453

118.1359

124.1163

128.2989

137.2084

100

61.9179

67.3276

70.0649

74.2219

77.9295

82.3581

118.4980

124.3421

129.5612

135.8067

140.1695

149.4493